Fault detection in induction motors using Hilbert and Wavelet transforms
نویسندگان
چکیده
In this work, a new on-line method for detecting incipient failures in electrical motors is proposed.The method is based on monitoring certain statistical parameters estimated from the analysis of the steady state stator current (for broken bars, saturation, eccentricities, and bearing failures) or the axial flux signal (for coil short-circuits in the stator windings). The approach is based on the extraction of the envelop of the signal by Hilbert transformation, pre-multiplied by a Tukey window to avoid transient distortion. Then a wavelet analysis (multi-resolution analysis) is performed, which makes the fault diagnosis easier. Finally, based on a statistical analysis, the failure thresholds are determined. Thus, by monitoring the mean value estimate it is possible to detect an incipient failure condition on the machine.
منابع مشابه
Condition monitoring methods, failure identification and analysis for Induction machines
Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment and industrial processes. The studies of induction motor behavior during abnormal conditions, and the possibility to diagnose different types of faults have been a challenging topic for many electrical machine researchers. The Motor Current Signature Analysis ...
متن کاملDesign of an Active Approach for Detection, Estimation and Short-Circuit Stator Fault Tolerant Control in Induction Motors
Three phase induction motors have many applications in industries. Consequently, detecting and estimating the fault and compensate it in a way that the faulty induction motor satisfies the predefined goals are important issues. One of the most common faults in induction motors is the short circuit of the stator winding. In this paper, an active fault-tolerant control system is designed and pres...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملNonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملA Review of Application of Signal Processing Techniques for Fault Diagnosis of Induction Motors – Part I
Abstract - Use of efficient signal processing tools (SPTs) to extract proper indices for fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The Part1 of the two parts paper focuses on Fourier-based techniques including fast Fourier transform and short time Fourier transform. In this paper, all utilized SPTs which have been employed for fault fete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006